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Abstract 
 

In this paper, a three-dimensional (3-D) finite element (FE) analysis 
procedure for the macroscopic compressive failure of concrete materials is described 
and a numerical example is shown. A 3-D digital image of concrete materials is 
directly used for geometrically accurate FE modeling with digital image processing. 
Concrete materials are modeled as two-phase composites consisting of coarse 
aggregates, mortar, and the interfaces between them to explain the macroscopic 
compressive failure from local tensile fractures. 
 
Introduction 
 
 In many practical stress analyses of concrete structures, concrete materials 
are regarded as homogenous materials and constitutive laws to represent their 
nonlinear stress-strain relations are phenomelogical models. This is enough to predict 
the mechanical behaviors of concrete structures. However, from a microscopic point 
of view, concrete materials are multi-phase composite materials. It has been 
recognized that local tensile failures derived from the material heterogeneities are the 
most essential mechanical behaviors. As a consequence of their accumulation, 
mechanical behaviors of concrete materials can be observed as nonlinear stress-strain 
relations from a macroscopic point of view. The relation between the macroscopic 
behaviors and the local tensile failures is complex and it has not been almost clear in 
detail, especially for compression. 
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 The objective of this work is to explain the macroscopic mechanical 
behaviors of concrete materials subjected to compression from the local tensile 
failures by numerical analysis. If they can be explained, macroscopic mechanical 
behaviors of concrete materials subjected to tension can be also explained. Such a 
numerical analysis of concrete materials may give much useful information to the 
more precise modeling of the constitutive laws. However, numerical analysis of 
concrete materials seem to be not yet enough to do it. Therefore, this paper proposes a 
new FE analysis procedure for the compressive failure of concrete materials by using 
a real digital image. 
 
Finite Element Modeling Based on Real Digital Image of Concrete Materials  
 
 At the first step of the numerical analysis of concrete materials, proper 
geometric modeling as composites is required to capture local tensile failures in 
concrete materials caused by macroscopic compression. A two-phase system 
consisting of coarse aggregates and homogeneous mortar should be modeled due to 
the size effect of fracture mechanics, although various smaller constituents exist in 
mortar. This corresponds to the experimental result of Cordon and Gillespie (1963) 
that the maximum size of coarse aggregates considerably influences the compressive 
strength. It is clear from this result that various geometric properties of coarse 
aggregates such as their size, shape and configuration influence the mechanical 
behaviors.  
 
 Thus, the proper geometric modeling is important. However, it is difficult 
because the geometry of the coarse-aggregates-and-mortar system is complex in 3-D 
space. Moreover, with the conventional FE method, FE meshing is very difficult 

 

 

Digital image 
processing 

Geometrically accurate 
FE mesh  (1282 FEs) @

A section of concrete specimen  
Fig. 1 2-D digital image-based FE modeling 



because the mesh have to be fitted to the 3-D complex geometry. 
 
 To avoid these difficulties, we directly use a real digital image acquired from 
a physical concrete specimen (Nagai et al. 1998, 2000a). The original concept of the 
use of digital images has been proposed by Hollister and Kikuchi (1994) in the field 
of biomechanics. In the 2-D case, a digital image consists of a small square-shape 
element whose center is a sampling point. The small square element is called a pixel 
(picture cell). If one pixel is regarded as one 4-node square-shape FE, a domain can 
be divided into the same shape FEs. Material properties of individual FE can be 
determined by thresholding the gray level on the sampling point. That is, the entire 
FE meshing procedures can be replaced by digital image processing as shown in Fig. 
1. Obviously, the digital image-based FE modeling is geometrically accurate if 
appropriate digital images can be obtained. 
 
 This digital image-based FE modeling can be easily extended to the 3-D 
case. A 3-D digital image is a stack of 2-D sectional digital images. As well as the 
2-D case, one small element called a voxel (volume cell) can be regarded as one 
8-node cubic-shape FE. The sequence of the sectional digital images is acquired by 
the repetition of scraping a physical concrete specimen and scanning the section as 
shown in Fig. 2-a. After image processing, a coarse-aggregates-and-mortar model 
shown in Fig. 2-b is obtained. This model has 3203 voxels and the number of degrees 
of freedom is about 100 millions. We have developed a fast and efficient linear 
equation solver using the features of a digital image and the homogenization method 
(Guedes and Kikuchi 1990), and carried out the linear stress analysis of this model 
(Nagai et al. 2000b). 
 
 However, in exchange for the geometrically accurate FE modeling, a new 
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problem arises from a feature of digital images. That is, the interfaces between coarse 
aggregates and mortar are approximated to jagged. In addition, it has been recognized 
that local tensile failures observed as cracks initially occur along the interfaces, and 
launch into coarse aggregates or mortar. Therefore, the following section describes an 
improvement of the digital image-based FE modeling to represent the interfaces and 
the interfacial cracks more precisely. 
 
High-Resolution Modeling of Coarse-Aggregates-and-Mortar Interfaces 
 
 We now define the interfaces between coarse aggregates and mortar as 
shown in Fig. 3. The interfaces are independent of the digital FE mesh. The FEs 
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containing the interfaces are referred to interfacial FEs. We propose a new mixed 
formulation for the interfacial FEs (Nagai 2000a), which is based on the assumed 
enhanced strain (AES) method proposed by Simo and Rifai (1990). To make the FE 
mesh from a 3-D digital image of concrete materials, a 3-D edge-based contouring 
algorithm can be employed. This algorithm is known as iso-surface of discretized 
volume data in the field of medical image or scientific visualization. 
 
A mixed formulation based on the assumed enhanced strain method 
 The displacement field in the vicinity of the interfacial FEs can be modeled 
as (a) in Fig. 3. According to the approach of Oliver (1996a, 1996b), the displacement 
function (a) can be decomposed into three functions (c)-(d). (b) is a continuous 
function, (c) is a weak discontinuous function related to the strain jump derived from 
the presence of two different materials, and (d) is a strong discontinuous function 
related to the displacement jump derived from the interfacial crack. In the AES 
method, (a) is taken into the mixed formulation as compatible mode, and (c) and (d) 
as incompatible modes. The incompatible modes are appeared only in the interfacial 
FEs. The rests are ordinary FEs as described in the previous section. For individual 
interfacial FE, traction continuity on an interface by means of integration is imposed 
as the constraint condition of the AES method. This ensures the satisfaction of the 
patch test (Simo and Rifai 1990). 
 
Finite element meshing with 3-D edge-based contouring 
 We now adopt another definition of a voxel to regard as an 8-node cubic- 
shape FE. A voxel is defined in eight sampling points that forms a cube. Each 
sampling point can be classified into coarse aggregates or mortar region by 
thresholding the gray level at a certain level θ . Let us consider an edge of the cube. If 
both sampling points connecting to the edge do not belong to the same region, an 
intersectional point of the edge and the interface exists. The intersectional point x can 
be computed from the gray level f on the two sampling points x1, x2 with the 
following linear interpolation; 
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With the algorithm of Nagae et al. (1993), all intersectional points in an interfacial FE 

 
 

Coarse aggregate region�

Mortar region� Interface�

 
Fig. 4-a Interface in an interfacial FE Fig.4-b Subdivision into tetrahedrons 



can be connected systematically. For example, Fig. 4-a shows an interface in an 
interfacial FE. Integration in the interfacial FE can be evaluated by subdividing its 
whole domain into tetrahedrons as shown in Fig. 4-b. It is noted that if no 
intersectional point exists in a voxel, the voxel is an ordinary FE. 
 
A Numerical Example 
 
Constitutive law for coarse-aggregates-and-mortar interfaces 

As a constitutive law for the interfaces between coarse aggregates and mortar, 
the isotropic continuum damage model of Oliver (1996a) is used. In this model, only 
tensile failures are taken into account. The tensile failures occur if at least one of 
stresses in the principal stress coordinate system shown in Fig. 5 exceeds a certain 
tensile strength limit. Tensile softening monotonically follows the exponential curve 
with consideration of the fracture energy, and unloading goes toward the origin. 
Initial linear elastic modulus is used in pure compression domain. The material 
properties used in this example are shown in Table 1. 
 
Uni-axial macroscopic compression 
 A real 3-D digital image of concrete materials shown in Fig. 6-a is used. 
This model has 483 FEs. Interfaces in the digital FE mesh are shown in Fig. 6-b. The 
macroscopic structure is subjected to vertical compression by using the 
homogenization method (Guedes and Kikuchi 1990). The nonlinear equation is 
solved by using the secant stiffness method. The macroscopic stress-strain relation is 
shown in Fig. 6-c. The distribution of minimum principal stress at the point A in 
Fig.6-c is shown in Fig. 6-d. 
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Fig. 5 Criterion of damage progression and constitutive law of interface 

 
 

Table 1 Material properties 
 Young’s modulus Poisson’s ratio Fracture energy Tensile strength 
Coarse Agg. 69 GPa 0.20 - - 
Mortar 25 GPa 0.20 - - 
Interface 250 GPa/mm 0.20 4.9 J/m2 1.2 MPa 



 
Concluding Remarks 
 
 Digital image-based FE modeling of concrete materials consisting of coarse 
aggregates and mortar has been described. This FE modeling is geometrically 
accurate in spite of its 3-D complex geometry. The interfaces between coarse 
aggregates and mortar can be modeled by using a new mixed FE and a 3-D 
edge-based contouring algorithm. The first stage of the macroscopic compressive 
mechanical behavior of concrete materials can be exhibited by modeling only local 
tensile failures on the interfaces. If the local tensile failures launching into coarse 
aggregates or mortar are taken into account, we could obtain the point of macroscopic 
compressive strength. 
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Fig. 6-c Macroscopic stress-strain relation Fig. 6-d Minimum principal stress at point A 
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